Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Immunol ; 13: 981350, 2022.
Article in English | MEDLINE | ID: covidwho-2022756

ABSTRACT

Background: SARS-CoV-2 vaccination has proven the most effective measure to control the COVID-19 pandemic. Booster doses are being administered with limited knowledge on their need and effect on immunity. Objective: To determine the duration of specific T cells, antibodies and neutralization after 2-dose vaccination, to assess the effect of a third dose on adaptive immunity and to explore correlates of protection against breakthrough infection. Methods: 12-month longitudinal assessment of SARS-CoV-2-specific T cells, IgG and neutralizing antibodies triggered by 2 BNT162b2 doses followed by a third mRNA-1273 dose in a cohort of 77 healthcare workers: 17 with SARS-CoV-2 infection prior to vaccination (recovered) and 60 naïve. Results: Peak levels of cellular and humoral response were achieved 2 weeks after the second dose. Antibodies declined thereafter while T cells reached a plateau 3 months after vaccination. The decline in neutralization was specially marked in naïve individuals and it was this group who benefited most from the third dose, which resulted in a 20.9-fold increase in neutralization. Overall, recovered individuals maintained higher levels of T cells, antibodies and neutralization 1 to 6 months post-vaccination than naïve. Seventeen asymptomatic or mild SARS-CoV-2 breakthrough infections were reported during follow-up, only in naïve individuals. This viral exposure boosted adaptive immunity. High peak levels of T cells and neutralizing antibodies 15 days post-vaccination associated with protection from breakthrough infections. Conclusion: Booster vaccination in naïve individuals and the inclusion of viral antigens other than spike in future vaccine formulations could be useful strategies to prevent SARS-CoV-2 breakthrough infections.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Pandemics , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
2.
PLoS Pathog ; 17(12): e1010211, 2021 12.
Article in English | MEDLINE | ID: covidwho-1591125

ABSTRACT

The timing of the development of specific adaptive immunity after natural SARS-CoV-2 infection, and its relevance in clinical outcome, has not been characterized in depth. Description of the long-term maintenance of both cellular and humoral responses elicited by real-world anti-SARS-CoV-2 vaccination is still scarce. Here we aimed to understand the development of optimal protective responses after SARS-CoV-2 infection and vaccination. We performed an early, longitudinal study of S1-, M- and N-specific IFN-γ and IL-2 T cell immunity and anti-S total and neutralizing antibodies in 88 mild, moderate or severe acute COVID-19 patients. Moreover, SARS-CoV-2-specific adaptive immunity was also analysed in 234 COVID-19 recovered subjects, 28 uninfected BNT162b2-vaccinees and 30 uninfected healthy controls. Upon natural infection, cellular and humoral responses were early and coordinated in mild patients, while weak and inconsistent in severe patients. The S1-specific cellular response measured at hospital arrival was an independent predictive factor against severity. In COVID-19 recovered patients, four to seven months post-infection, cellular immunity was maintained but antibodies and neutralization capacity declined. Finally, a robust Th1-driven immune response was developed in uninfected BNT162b2-vaccinees. Three months post-vaccination, the cellular response was comparable, while the humoral response was consistently stronger, to that measured in COVID-19 recovered patients. Thus, measurement of both humoral and cellular responses provides information on prognosis and protection from infection, which may add value for individual and public health recommendations.


Subject(s)
Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccination , Adult , Aged , Antibodies, Neutralizing/blood , Female , Humans , Immunoglobulin G/blood , Longitudinal Studies , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL